Coracoid process fracture combined with acromioclavicular joint dislocation and coracoclavicular ligament disruption

K.S. Yu (1), P.T. Chan (1), W.K. Ngai (1), Y.S. Faan (2), W.T. Lo (3)

(1) Department of Orthopaedics and Traumatology, North District Hospital
(2) Department of Physiotherapy, North District Hospital
(3) Department of Occupational Therapy, North District Hospital

Correspondence:
Department of Orthopaedics and Traumatology, North District Hospital, No. 9 Po Kin Road, Sheung Shui, N.T., Hong Kong SAR, China Tel: +852-2683-7588
Fax: +852-2683-7576
E-mail: yuks@ha.org.hk

Abstract
This extremely rare triple injury was treated operatively with screw fixation of the coracoid process, transacromial fixation of the acromioclavicular joint, and repair of the coracoclavicular ligament. The treatment yielded excellent results with good power and full range of motion.

Résumé
Cette blessure triple extrêmement rare a été traitée chirurgicalement avec fixation par vis de la coracoïde, fixation trans-acromiale de l'acromio-claviculaire, et réparation du ligament coraco-claviculaire. Le traitement a donné un excellent résultat avec une bonne force musculaire et une mobilité complète.
Introduction
Cases having fracture of the coracoid process combined with an acromioclavicular joint dislocation and coracoclavicular ligaments disruption is rare, with only two adult cases and a pediatric case reported in the English-language literature (Table 1) [6,7,8]. It is important to recognize all three lesions and treat accordingly.

Case-Report
A 37-year-old truck driver sustained a road traffic accident with a left shoulder injury. The truck toppled over onto the left side and the patient fell with his arm adducted, striking the shoulder against a firm object. Physical examination revealed a prominent left distal clavicle and tenderness over the acromioclavicular joint and the coracoid process. The range of motion of the shoulder joint was restricted due to pain. The neurological examination of the upper limb was normal. There was no other major injury. Radiological examination of the shoulder revealed a third degree acromioclavicular joint dislocation and widening of the coracoclavicular distance (Figure 1). Stryker view and CT scan showed a fracture through base of the coracoid process (Figure 2). (Figure 3). He was treated operatively, namely open reduction and internal fixation of the acromioclavicular joint with two 2.0mm smooth Kirschner wires. The coracoclavicular ligaments were found to be avulsed from the coracoid process and was fixed back with a suture anchor (Mitek, Johnson and Johnson) (Figure 4). The coracoid process was fixed with a 6.7 mm diameter-cannulated screw (Alphatec cannulated cancellous screw system, Alphatec). Position of the coracoid process and the screw was confirmed with intraoperative radiographic screening. The patient had an uneventful postoperative course and was discharged on the sixth day after operation with his arm in a sling. Active shoulder motion exercise was started. Two months after operation, the Kirschner wires became loosened and were removed subsequently. Physical examination of the shoulder at six months showed full range of motion. Radiological assessment confirmed union of the coracoid process (Figure 5). (Figure 6). Functional outcome was assessed on the basis of Constant and Murley scoring system at final follow-up 36 months post injury, which was 95. He resumed normal manual duty and showed normal shoulder function without pain.

Discussion
Injury to the acromioclavicular joint is common. The majority of injuries occur when the patient falls with the arm adducted, striking the shoulder against the ground or some other firm object [4,5]. The resultant force produces inferior displacement of the scapula in relation to the clavicle. The acromioclavicular joint injuries consist of a continuum of ligament injuries, beginning with injury to the acromioclavicular ligaments only. With increasing force, the coracoclavicular ligaments become involved, followed by the deltoid and trapezius musculature, and ultimately the overlying fascia is torn [5]. In adults, the coracoid process and the clavicle are stronger than the coracoclavicular ligaments and usually are not damaged [3]. Therefore, in adults almost all the complete acromioclavicular joint dislocation involve a tear of the coracoclavicular ligaments instead of a fracture of the coracoid process. In the case presented, the coracoclavicular ligaments were avulsed from the coracoid process. Therefore, it is unlikely that an avulsion force from the ruptured ligaments causes the coracoid process fracture. Direct trauma to the coracoid process is
unlikely because it is well protected by the clavicle from above. On the other hand the
coracoid process fracture may have been caused by a violent pull at the apex of the
coracoid process by the conjoined tendon of the short head of the biceps, the
.coracobrachialis muscles and pectoralis minor muscles [6,7]. Forceful resisted flexion
of the arm and elbow in trying to prevent him from falling probably avulsed the
coracoid process and caused the fracture. Hence, it is the combination of two forces
that appear to be responsible for this extremely rare triple injury; with the direct
contusion injury to the shoulder girdle, causing dislocation of the acromioclavicular
joint and rupture or avulsion injury of the coracoclavicular ligaments; and a sudden
pull on the coracoid process by the conjoined tendons, causing fracture of the
coracoid process. All the cases reported were treated operatively. The result was
good in general [6,7,8]. Acromioclavicular fixation should be used to stabilize the
acromioclavicular joint. Like Jacobs and Lizaur, we believe that early
acromioclavicular degeneration is not caused by articular perforation with wires [1,2].
Therefore, transacromial fixation with two smooth wires was chosen as the primary
fixation device. The coracoid process was fixed with a cannulated screw under
intraoperative X-ray control. This can facilitate correct placement of the screw. Like
Rockwood, we believe direct repair or reattachment of the coracoclavicular ligaments
back to the coracoid process is important [5]. The coracoclavicular ligaments were
explored and were found to be avulsed from the coracoid process; they were fixed
back with a suture anchor (Mitek, Johnson and Johnson). Different from the three
cases reported, coracoclavicular loop was not used; this can avoid late complication
of erosion through the clavicle. Internal fixation allows immediate postoperative
rehabilitation with mobilization exercise.
Legends

Table 1: Case Summaries

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>M</th>
<th>Sport injury (playing football)</th>
<th>O: screw fixation of the CP, Mersilene wrap and suture of the coracoclavicular ligaments</th>
<th>Asymtomatic with full ROM at 4 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zettas and Muchnic (1976)</td>
<td>20</td>
<td>M</td>
<td>Football injury (with coracoclavicular ligament rupture also)</td>
<td>ORIF of ACJ with 4.5mm screw for 6 weeks; ORIF of CP with 4.0mm screw; Dacron prosthesis in a coracoclavicular loop.</td>
<td>Full painless ROM</td>
</tr>
<tr>
<td>Wilson and Colwill (1989)</td>
<td>28</td>
<td>M</td>
<td>Motorcycle accident (with coracoclavicular ligament rupture also)</td>
<td>ORIF of ACJ with two Kirschner wires for 3 months; ORIF of CP with 4.0mm screw; Marlex prosthesis in a coracoclavicular loop.</td>
<td>Normal function without pain</td>
</tr>
<tr>
<td>Wang et al. (1994)</td>
<td>37</td>
<td>M</td>
<td>Road traffic accident</td>
<td>ORIF of ACJ with two Kirschner wires for 2 months; ORIF of CP with 6.7mm screw; Mitek suture anchor repair of the coracoclavicular ligament.</td>
<td>Normal function without pain</td>
</tr>
</tbody>
</table>

C: conservative treatment

O: operative treatment

ROM: range of motion

CP: coracoid process

ACJ: acromioclavicular joint
Figure 1: Anteroposterior radiograph of the involved shoulder at the time of injury
Figure 2: Stryker view showed fracture of base of the coracoid process
Figure 3: CT scan showed fracture of base of the coracoid process
Figure 4: Anteroposterior radiograph performed after operation
Figure 5: Radiograph at 6 months after operation
Figure 6: Stryker view at 6 months after operation confirmed union of the coracoid process fracture
References

